
Design and Analysis of a Dynamic Scheduling Strategy
with Resource Estimation for Large-Scale Grid Systems

Sivakumar Viswanathan, Bharadwaj Veeravalli
Department of Electrical and Computer Engineering, National University of Singapore

4 Engineering Drive 3, Singapore 117576
{g0306272, elebv}@nus.edu.sg

Dantong Yu
Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

dtyu@bnl.gov

Thomas G. Robertazzi
Department of Electrical and Computer Engineering, Stony Brook University

Stony Brook, NY 11794, USA
tom@ece.sunysb.edu

Abstract

In this paper, we present a resource conscious dynamic
scheduling strategy for handling large volume computa-
tionally intensive loads in a Grid system involving multiple
sources and sinks/processing nodes. We consider a “pull-
based” strategy, wherein the processing nodes request load
from the sources. We employ the Incremental Balancing
Strategy (IBS) algorithm proposed in the literature and pro-
pose a buffer estimation strategy to derive optimal load dis-
tribution. Here, we consider non-time critical loads that
arrive at arbitrary times with time varying buffer availabil-
ity at sinks and utilize buffer reclamation techniques so as
to schedule the loads. We demonstrate detailed workings
of the proposed algorithm with illustrative examples using
real-life parameters derived from STAR experiments in BNL
for scheduling large volume loads.

1 Introduction

Large volume computational data that are being gener-
ated in the high energy and nuclear physics experiments de-
mand new strategies for collecting, sharing, transferring and
analyzing the data. For example, the Solenoidal Tracker At
RHIC (STAR) experiment at Brookhaven National Labora-
tories (BNL) is collecting data at the rate of over a Tera-
Bytes/day. The STAR collaboration is a large international
collaboration of about 400 high energy and nuclear physi-

cists located at 40 institutions in the United States, France,
Russia, Germany, Israel, Poland, and so on. After the Rel-
ativistic Heavy-Ion Collider (RHIC) experiments at BNL
came on-line in 1999, STAR began data taking and con-
current data analysis that will last about ten years. STAR
needs to perform data acquisition and analyzes over ap-
proximately 250 tera-bytes of raw data, 1 peta-bytes of de-
rived and reconstructed data per year. The volume of data
is expected to increase by a factor of 10 in the next five
years [12]. These experiments require effective analysis of
large amounts of data by widely distributed researchers who
must work closely together. Expanding collaborations and
intensive data analysis coupled with increasing computa-
tional and networking capabilities stimulates a new era of
service oriented computing: Grid computing [1].

Grid computing consists of large sets of diverse, geo-
graphically distributed resources that are collected into a
virtual computer for high performance computation. Grid
computing creates middleware and standards to function be-
tween computers and networks to allow full resource shar-
ing among individuals, research institutes, and corporate or-
ganizations and to dynamically allocate the idle computing
capability to the needed users at remote sites. The diver-
sity of these computing resources and their large number of
users creates a challenge to efficiently schedule and utilize
these resources.

Scheduling is a significant problem in fairly allocating
resources in cluster and grid systems. In DLT domain,
scheduling loads under time varying processor and link

speeds have been studied in [6]. However, to date there
has been no work on dynamically scheduling divisible loads
(large volume loads) on a Grid environment when the re-
source availability at sinks varies randomly over time. The
motivation for this paper stems from the challenges in man-
aging and utilizing computing resources in Grids as effi-
ciently as possible, with performance optimization as the
main focus. The performance metric of interest includes,
job throughput, resource utilization, job response time and
its variance. We propose an efficient dynamic scheduling
strategy for situations where in the jobs needs to be com-
pleted as early as possible. We provide detailed analysis of
the algorithm with respect to the above metrics and demon-
strate the performance using illustrative examples with real-
life parameters derived from STAR experiments in BNL.
The analytical flexibility offered by divisible load schedul-
ing theory (DLT) is thoroughly exploited to design resource
aware algorithms that make best use of the available re-
sources on the grid. It also offers an exciting opportunity
to optimally schedule multiple divisible loads in Grid com-
puting.

Our contributions in this paper are multi-fold. We con-
sider the problem of scheduling several loads generated in
a Grid system onto a set of nodes, using the DLT paradigm.
We design and propose a dynamic scheduling algorithm that
considers system level constraints such as finite buffer ca-
pacity constraints at the processing nodes. We propose re-
source reclaiming strategies in our design of the algorithm.
The workings of our algorithm is elaborated using numer-
ical example with real-life parameters and data acquired
from STAR experiments, described above. Our algorithm
is designed to adapt to network and load size scalability.
Our study and systematic design clearly elicits the advan-
tages offered by our strategy. The paper is organized as fol-
lows: In section 2 we provide the research background and
related work for Grid scheduling and DLT. In section 3 we
formalize the multi-source and multi-sink problem in a Grid
system. In section 4 we discuss the load distribution strat-
egy and provide a Incremental scheduling strategy for the
dynamic environment. In section 6 we discuss the schedul-
ing algorithm and highlights its advantages and provide the
conclusion.

2 Related Work

In this section, we shall now present some of the related
work relevant to the problem addressed in this paper. For
divisible loads, research since 1988 has established that op-
timal allocation/scheduling of divisible load to processors
and links can be solved through the use of a very tractable
linear model formulation, referred to as DLT. It is rich in
such features as easy computation, a schematic language,
equivalent network element modelling, results for infinite

sized networks and numerous applications. This linear the-
ory formulation opens up striking modelling possibilities
for systems incorporating communication and computation
issues, as in parallel, distributed and Grid computing. Op-
timality here involving solution time and speedup is de-
fined in the context of a specific scheduling policy and in-
terconnection topology. The linear model formulation usu-
ally produces optimal solutions through linear equation so-
lution or, in simpler models, through recursive algebra. The
model can take into account heterogeneous processor and
link speeds as well as relative computation and communi-
cation intensity.

DLT can model a wide variety of approaches, such as
store and forward and virtual cut through switching and
the presence or absence of front end processors. Front
end processors allow a processor to both communicate and
compute simultaneously by assuming communication du-
ties [8]. There exists literature of some sixty journal papers
on DLT. In addition to the monograph [8], two introduc-
tory up-to-date surveys have been published recently [4,9].
The DLT theory has been proven to be remarkably flexible
in the sense that the model allows analytical tractability to
derive a rich set of results regarding several important prop-
erties of the proposed strategies and to analyze their perfor-
mance. Consequently, we do not attempt to present another
survey here; however, we refer to the following papers that
are either directly or indirectly relevant to the context of
this paper. A very directly relevant material to the problem
addressed in this paper is [3] in which authors propose an
Incremental Balancing Strategy (IBS) to accommodate di-
visible loads when there are buffer constraints in the proces-
sors. An alternative scheme for dynamic environments that
considers admission control mechanisms has been studied
recently in [10]. Issues such as processor release times cou-
pled with buffer capacity constraints are studied in [7]. The
solution time (time at which the processed loads/solution is
made known at the originator) is discussed in [5]. We refer
astute readers to the recent surveys mentioned above for an
up-to-date literature in this domain.

3 Problem Formulation and Some Remarks

The Grid computing system to be considered here com-
prises ofN control processors, referred to assources, that
have load to be processed andM computing elements, re-
ferred to assinks, for processing loads, as shown in Fig-
ure 1. Each sink might include one supercomputer or a
cluster of computers connected by local area networks and
controlled by a header (root) node, and may have different
computing and communication capabilities. In a simplified
view, these clusters of processors can be replaced with a
single equivalent processor. The grid computing system can
then be modelled as a fully connected bi-partite graph as in

2

� �

� � � � � � � 	
 � � � � � � � �� � � � � � � � �

� � �

Figure 1. Grid System

Figure 2: a set of graph vertices could be decomposed into
two disjoint sets such that no two graph vertices within the
same set are adjacent, while any pair of two graph vertices
from these two sets are adjacent. Thus this bi-partite graph
is a representation of the fact that each source can schedule
its load on all the sinks.

In real-life situations, one of the practical constraints is
the availability of the resources on a Grid. For instance,
this resource could be the memory capacity that a sink can
offer to the sources. Thus, whenever two or more sources
compete for a sink, the available memory (equivalently, the
amount of load that can be accepted for processing from
each source) is to be shared among such sources. We pre-
cisely consider this real-life constraint in our proposed al-
gorithm. Further, on such a Grid environment, it is pos-
sible that one can either follow apush-based approach or
a pull-based approach to distribute and schedule the loads.
In a push-based approach, the sources themselves identify
potential sinks (with an assumption/knowledge about the
available resources at the sinks) and schedule their loads.
Whereas, in a pull-based approach, the sinks collect the re-
quests from the competing sources and schedule them de-
pending on the availability of the resources among them-
selves. Both the schemes have their merits and the choice
of the approach depends purely on the application require-
ments and implementation constraints such as the size of
the grid, the resource availability, etc. In this paper, we
shall consider a pull-based approach in the design of our
scheduling strategy.

Now, we will formally define the problem we address.
As described above, we consider a Grid system withN
sources denoted asS1, S2, ..., SN andM sinks denoted as
K1,K2, ..., KM . For each source, there is a direct link to
all the sinks and we denote the link betweenSi andKj as
li,j , i = 1, .., N, j = 1, .., M . Each sourceSi has a load,
denoted byLi to process. Without loss of generality, we
assume that all sources can send their loads to all the sinks
simultaneously. Similarly, we also assume that all the sinks
can request and receive load portions from all sources.

� � � � � �

� � � 	
 ��

Figure 2. Abstract Overview of Grid System

The objective in this study is to schedule all theN loads
amongM sink nodes such that theprocessing time, defined
as the time instant when all theM sinks complete process-
ing the loads, is a minimum. The scheduling strategy is such
that the scheduler (without loss of generality we assume that
the scheduler resides inK1) will first obtain the informa-
tion about the available memory capacities at other sinks,
their computing speeds, and the size of the loads from the
sources. The scheduler will then calculate and notify each
sink on the optimum load fractions that are to be requested
from each source. This information can be easily commu-
nicated using any of the standard or customized communi-
cation protocols without incurring any significant commu-
nication overhead.

The sources, upon knowing the amount of loads that they
should give to each sink, will send their loads to all sinks si-
multaneously. Following Kim’s model [2], we assume that
the sinks will start computing the load fractions as they start
receiving them. We also assume that the communication
time delay is negligibly smaller than the computation time
owing to high speed links so that no sinks starve for load.

We shall now introduce the definitions and notations that
are used throughout this paper.

N (M) Total number of sources (sinks) in the system, with each
source (sink) denoted bySi, i = 1, ...N (Kj , j = 1, ...M).

wj Inverse of the computing speed ofKj .

Li Load atSi such that the total load in the system,L =
PN

i=1 Li.

αi,j (α̂i,j) Amount of load (estimated) thatKj shall request from
Si in an iteration.

αj Fraction of load fromL(q) thatKj should take in an iteration,
αj =

PN
i=1 αi,j .

Tcp Computing intensity constant.

T (q) Time taken to process the loads in theq-th iteration.

Y Fraction of the loadL that should be taken into consideration in
an iteration of installment, whereY ≤ 1.

p Buffer estimator confidence factor.

3

B
(q)
j (B̂(q)

j) Available (Estimated) buffer space inKj in the q-th
iteration.

Pall (Pnow) Set of sinks (with buffer space available for processing
in an iteration) in the system.

Xnow Set of sources that are being processed in an iteration.

Xnew Set of sources that arrive at the system when the system is
idle or busy processing for some sources.

4 Dynamic Incremental Scheduling strategy

We employ Kim’s multi-port communication model [2]
for load distribution and assume thatK1 generates the re-
quired schedule satisfying the resource constraints. Here,
we also assume that the sinks will start computing the load
fractions as they start receiving them and that the communi-
cation time delay is negligibly smaller than the computation
time owing to high speed links so that no sinks starve for
load. In the DLT literature [8], in order to derive an optimal
solution it was mentioned that it is necessary and sufficient
that all the sinks that participate in the computation must
stop at the same time instant; otherwise, load could be re-
distributed to improve the processing time.

Using this optimality principle and assuming infinite
buffer space at sink nodes, i.e., a sink can hold any amount
of load from the sources, load fractions that a sinkKj shall
receive from the sourceSi is derived in [11] as

αi,j =
1

wj(
∑M

x=1
1

wx
)
Li (1)

While deriving these load fractions, it is assumed that each
sink requests a load fraction that is proportional to the size
of the load at the source. Moreover, each sink requests
the same load fraction (percentage of total load) from each
source.

However, in real-life situations, each sink always has a
limit to the amount of buffer space that can be used. Fur-
ther, in a generic Grid environment, each node may be run-
ning multiple tasks such that it is required to share the avail-
able resources, hence there may be only a limited amount of
buffer space that is allocated for processing particular loads
at a given time. As a result, we are naturally confronted with
the problem of scheduling divisible loads under buffer ca-
pacity constraints. The IBS algorithm proposed in [3] pro-
duces a minimum time solution given pre-specified buffer
capacity constraints and it also exhibits finite convergence,
but it does not consider scheduling under dynamic environ-
ments and buffer space variations at processing nodes. In
this paper, we propose a Dynamic Incremental Schedul-
ing (DISS) that takes care into account the variations in
buffer space availabilities with sink nodes and also propose
an adaptive estimation scheme to schedule the processing
loads in an incremental fashion.

Initial state:

I = {1, 2, ...N} , J = {1, 2, ...M} , q = 0 , T (0) = 0 , p = 0.95

B̂
(0)
j = B

(0)
j , α

(0)
i,j = 0

Step 1: All sinks estimateB̂(q+1)
j and communicate it toK1:

If (q = 0) B̂
(q+1)
j = B

(q)
j

elseB̂
(q+1)
j = ((

Pq
k=1(k ∗ B

(k)
j)) / (

Pq
k=1 k)) ∗ p

Step 2: K1 estimatesα̂(q+1)
i,j , determinesT (q+1) and communicates

them to all sinks:

Li = Li −
PM

j=1 α
(q)
i,j , ∀Si ∈ Xnow , i ∈ I

If (Xnew 6= ∅) {Xnow = Xnow ∪Xnew , Xnew = ∅ }
If (Li = 0) {Xnow = Xnow − {Si}}, ∀Si ∈ Xnow , i ∈ I

Pnow = Pall

If(B̂(q+1)
j = 0) Pnow = Pnow − Kj , ∀Kj , j ∈ J

α
(q+1)
j = 1/(wj

PM
x=1

1
wx

) , ∀Kj ∈ Pnow, j ∈ J

L =
PN

i=1 Li , ∀Si ∈ Xnow , i ∈ I

Y = min{B̂(q+1)
j /(α

(q+1)
j L) , ∀Kj ∈ Pnow} , j ∈ J

If (Y > 1) {Y = 1}
α̂

(q+1)
i,j = Y α

(q+1)
j Li , ∀Si ∈ Xnow , i ∈ I , ∀Kj , j ∈ J

T (q+1) =
PN

i=1 α̂
(q+1)
i,j wjTcp , Kj ∈ Pnow

Step 3: After the time period T (q), all sinks Schedule:

q = q + 1

If (
PN

i=1 α̂
(q)
i,j > B

(q)
j) { α

(q)
i,j = α̂

(q)
i,j ∗ (B

(q)
j /

PN
i=1 α̂

(q)
i,j)

Communicateα(q)
i,j to K1}

elseα
(q)
i,j = α̂

(q)
i,j

B
(q)
j = B

(q)
j −PN

i=1 α
(q)
i,j

Sinks request and process load fractionsα
(q)
i,j from Sources

Go to Step 1

Figure 3. Pseudo code for a "Pull-based" DISS
with Distributed Buffer Space Estimation

In a real-life system, the total amount of loads to be pro-
cessed may exceed the available buffer space at sinks and
the loads may also arrive at arbitrary times to the system for
processing. Thus, the number of loads to be processed may
vary over time and also demand for processing may arise at
any time. It will be difficult to estimate a priori the max-
imum amount of load that may be in the system. This is
especially true on Grids, as any node can attempt to inject
a load when it has one to be processed. Under such con-
ditions, a feasible scheduling may not exist unless the sink
nodes allow their buffer space to be reclaimed after a given
load is processed. This means that, after processing a given
load, the sinks shall make their buffer space available for
subsequent processing. Thus in order to handle the situa-
tion wherein sources demand processing at various time in-

4

stants, dynamic scheduling strategies needs to be designed
in such a way that sinks continue to render their available
buffer space to the sources. The dynamic scheduling strate-
gies also need to take into account that the amount of buffer
space available at sinks may vary over time and this varia-
tion may not be known a priori. Under such conditions, the
sinks shall estimate the amount of buffer space that it could
offer for scheduling in the next iteration and communicate
it to the scheduler node. A buffer estimation strategy is de-
scribed later in the Section 5. With this information, the
scheduler node shall generate the required schedule satisfy-
ing the resource constraints. It may be noted that in order
to estimate the load fractionŝαi,j , the scheduler will use
Equation 1.

As long as there is sufficient load in the system to com-
pletely consume the estimated amount of buffer space at one
of the sink nodes, the load fractionsαi,j that a sinkKj may
request from a sourceSi has to be reduced by a factorY ,
given by

Y = min

{
B̂j

(αjL)

}
(2)

This ensures that at each iteration all the sinks that partici-
pate in processing the loads complete processing at the same
time instant, if the actual buffer space available at a sink
node is equal to the estimated one at that node. The algo-
rithm attempts to fill up one or more sinks’ buffer space in
every iteration. In any iteration, if the remaining load is not
enough to completely consume the buffer space at any of
the participating nodes, the suggested distribution by equa-
tion (1) will be used. When two sinks have identical buffer
space, the one at the fastest sink will be fully utilized. As
long as there is enough load to be processed in an iteration,
the algorithm ensures that at least one sink’s buffer is com-
pletely utilized. The processing time for theq-th iteration is
given by,

T (q) =
N∑

i=1

α̂i,jwjTcp (3)

In the above algorithm, the load fractions have been cal-
culated based on the estimated buffer availabilities at the
sinks. But, at the start of the next iteration, the actual buffer
availabilities at the sinks may be different from the esti-
mated values. As long as the load fractions assigned to each
sink node by the nodeK1 is less than or equal to the ac-
tual buffer availabilities at those sink nodes, the sink nodes
can request for the load fractions assigned to them from the
sources. But, if the buffer available at a sink is less than
the load fraction assigned to it, then it could not process the
excess load that has been assigned to it. Hence, those sinks

shall recompute the load fraction as given by

αi,j = α̂i,j ∗ Bj∑N
i=1 α̂i,j

(4)

and request these load fractions from the sources. In ad-
dition to requesting these load fractions from the sources,
the sink node also has to communicate the modified load
fractions that it has requested from the sources to the mas-
ter sink nodeK1. This is done for computing the exact
amount of loads that remain at the sources for processing
for the next iteration, byK1. This information can be piggy
backed along with the estimated buffer availability at the
sink nodes that all sink nodes communicate to the master
sink nodeK1. Also, let us suppose thatK1 attempts to fill
the entire buffer ofK2. Suppose ifK2 could not accom-
modate all the load assigned to it, then it modifies the value
of αi,j assigned to it. ThenK2 together with other sink
nodes that did not participate in processing in that iteration
shall wait for all the other nodes to complete their process-
ing (that is, for the timeT (q)) before requesting for loads
from the sources again.

The optimal load fractions for the(q + 1)-th iteration
shall be estimated by the master sink nodeK1 while pro-
cessing the load for the(q)-th iteration, based on the total
amount of load that remains to be processed. This process
shall continue until all of the loads are processed. Note that
in this case, the load requesting by the sinks and processing
are dynamic in the sense that the IBS algorithm is invoked
to estimate the load distribution depending on the number of
sources and their respective load sizes. It may be noted that
it is not necessary for a sink to render diminishing buffer
space in every iteration to each source, since, the load to be
processed from a source also diminishes. Further, it should
be realized that the buffer space availability in sinks does
not have an affinity towards any source. Thus, if no other
sources demand processing, then the entire buffer is allo-
cated to the demanding source. Figure 3 summarizes the
above discussed policy.

The new set of loads and the unprocessed loads from
the existing sources are considered together for scheduling
in the next iteration. The following example clarifies the
working principle of the above strategy. The parameters
and data for this example are from real-life high energy
nuclear physics experiments [12].

Example 1: Let us suppose that there are three sources
with loads to be processed and there are four sinks that
can process these loads. Let the speed parameter of sinks
be w1 = 1.11 × 10−9, w2 = 6.25 × 10−10, w3 =
5.00 × 10−10 andw4 = 3.57 × 10−10, respectively. Let
Tcp = 6.52× 1012sec/load. Let the actual buffer capacities
at sinks at the initial state (that is, iterationq = 0) and itera-
tion q = 1 beB

(q)
1 = 6, B(q)

2 = 5, B(q)
3 = 0, andB

(q)
4 = 2;

5

q = 1
∑

α̂
(1)
i,j

∑
α

(1)
i,j B̂

(1)
j B

(1)
j

K1 0.643 0.643 6.000 5.357
K2 1.143 1.143 5.000 3.857
K3 0.000 0.000 0.000 0.000
K4 2.000 2.000 2.000 0.000

q = 2
∑

α̂
(2)
i,j

∑
α

(2)
i,j B̂

(2)
j B

(2)
j

K1 0.546 0.546 5.700 3.454
K2 0.970 0.970 4.750 2.030
K3 0.000 0.000 0.000 1.000
K4 1.698 1.000 1.900 0.000

q = 3
∑

α̂
(3)
i,j

∑
α

(3)
i,j B̂

(3)
j B

(3)
j

K1 0.284 0.284 4.433 1.716
K2 0.506 0.000 3.483 0.000
K3 0.633 0.633 0.633 1.367
K4 0.886 0.886 1.267 0.114

q = 4
∑

α̂
(4)
i,j

∑
α

(4)
i,j B̂

(4)
j B

(4)
j

K1 0.235 0.235 3.167 0.765
K2 0.415 0.415 1.742 0.585
K3 0.518 0.518 1.267 2.482
K4 0.727 0.727 1.108 0.273

Table 1. Buffer utilization values

at iterationq = 2 be B
(2)
1 = 4, B

(2)
2 = 3, B

(2)
3 = 1,

andB
(2)
4 = 1; at iterationq = 3 beB

(3)
1 = 2, B

(3)
2 = 0,

B
(3)
3 = 2, andB

(3)
4 = 1; and at iterationq = 4 beB

(4)
1 = 1,

B
(4)
2 = 1, B(4)

3 = 3, andB
(4)
4 = 1 units respectively. These

values are generated randomly using a uniform probability
distribution in the range[0, 7] in each iteration. We let the
three sources to have loadsL1 = 5, L2 = 2 andL3 = 3
unit loads, respectively. Let loadsL1 andL2 arrive att = 0
seconds, and loadL3 arrive att = 5 × 103 seconds. Note
that the computationally intensive nature of the problem is
reflected by the parameterTcp. Using the above algorithm,

we have the values forα(q)
i,j as shown in Tables 1 and 2. The

unutilized buffer space in all the iterations is given in the
last column of Table 1. From, these results, we observe that
buffer of K4 is fully utilized in iterations 1 and 2, whereas
buffer of K3 is not at all utilized in iteration 2 (because es-
timated buffer size is0 for that iteration). For iteration 3,
buffer ofK3 is estimated to be less than the actual value and
hence buffers of all the available sinks are under utilized in
that iteration. At the final iteration, the remaining load is in-
sufficient to completely fill up the buffer at any of the sinks.
The distribution suggested by the valuesαi,j in the Table 2
are used by the sinks. Iteration 1 to 4 are scheduled at time
t = 0, 4.655×103, 8.607×103, and1.067×104 seconds,
respectively. The total processing time for processing all the
three loads ist = 1.236× 104 seconds. From this example,

q = 1 S1 S2

∑
α

(1)
i,j

K1 0.459 0.184 0.643
K2 0.817 0.326 1.143
K3 0.000 0.000 0.000
K4 1.429 0.571 2.000

q = 2 S1 S2

∑
α

(2)
i,j

K1 0.390 0.156 0.546
K2 0.693 0.277 0.970
K3 0.000 0.000 0.000
K4 0.714 0.286 1.000

q = 3 S1 S2 S3

∑
α

(3)
i,j

K1 0.038 0.015 0.231 0.284
K2 0.000 0.000 0.000 0.000
K3 0.085 0.034 0.514 0.633
K4 0.119 0.048 0.719 0.886

q = 4 S1 S2 S3

∑
α

(4)
i,j

K1 0.032 0.013 0.190 0.235
K2 0.056 0.022 0.337 0.415
K3 0.070 0.028 0.420 0.518
K4 0.098 0.040 0.589 0.727

Table 2. Values for load fractions

it is seen that, because of the new sourceS3 and the buffer
space variations at the sinks, the processing time for the
other sources in the system is stretched tot = 1.236× 104

seconds. Below we describe the buffer estimation strategy
and its impact on the performance with respect to this ex-
ample is discussed in Section 6.

5 Buffer estimation Strategy

We propose a distributed buffer estimation strategy based
on weighted average calculations. The weights for comput-
ing the estimates are based on the iteration indices until the
current iteration. We refer to this estimator asIteration In-
dex based Buffer estimator(IIB). Our IIB algorithm shall be
executed at all sink nodes. A sink node, after estimating the
buffer space to render in the next iteration, shall communi-
cate it to the master sink nodeK1. Then,K1 shall execute
the dynamic scheduling algorithm described in Figure 3 to
determine thêαi,j that the participating sink nodes shall re-
quest from the sources.

For estimating the buffer availability at a sink, each sink
Kj needs to keep track of the actual buffer sizesBj from its
previous iterations. Note that for implementation purposes
it is sufficient to keep a cumulative value for the weighted
buffer space. In any iterationq, each sink node shall esti-
mate the buffer size that will be available for the next itera-

6

tion (q + 1) as

B̂
(q+1)
j =

{∑q
k=1((k/q) ∗B

(k)
j)∑q

k=1(k/q)

}
∗ p

⇒

=

{∑q
k=1(k ∗B

(k)
j)∑q

k=1 k

}
∗ p (5)

and declare it to the master sink node. In Equation 5,p is the
probability that the estimated buffer size will be available at
a sink at the next iteration. The value ofp can be chosen
based on the confidence level of the buffer estimator. For
practical purposes we shall assume thatp equals0.95. This
guarantees that the expected buffer sizes will be available
at the sinks, with a confidence level of95%, for the next
iteration. This may be observed in our example as discussed
in Section 6.

6 Discussions and Conclusions

The contributions in this paper are geared towards de-
signing and analyzing a dynamic scheduling strategy for
handling large volume loads that arrive to a grid system for
processing. The strategy that we proposed in this paper is
suitable for handling large scale data generated in physics
experiments (as discussed in Section 1). Since a Grid infras-
tructure is always viewed as a repository of resources that
can be availed by careful scheduling, implicit to this prob-
lem are some real-life constraints such as availability of the
nodes for processing, the amount of resources they can ren-
der, speeds with which the nodes and links can respond etc.
Also, as in the case of any networked system, here too, we
can follow a “pull-based” or “push-based” approaches. In
this paper, we considered a pull-based strategy. Further, we
considered a real-life situation where in the sinks have finite
sized buffer and hence the available buffer space have to be
shared in an optimal manner among the competing sources.
Also, we assumed that every sink attempts to request loads
from all participating sources for processing.

We tuned the IBS algorithm proposed in the literature to
tackle the posed problem. In addition, since the availabil-
ity of buffer spaces is dynamic, we proposed an estimation
strategy IIB which works on weighted average values as ex-
plained. The impact of IIB with respect to Example 1 is as
follows. In Table 1 we show the estimated as well as the
actual loads requested by the sinks. Further we also project
the estimated buffer values. Following are important points
to observe. In iteration 1, the estimated and the actual loads
being same, the buffer rendered is adequate to handle the es-
timated load. However, this does not carry far in the second
iteration. In iteration 2, we observe that atK4, the estimated
load being more than the actual buffer rendered, the actual

load that is to be requested is tailored to adapt to the avail-
able space. It may also be observed that in iteration 2, the
estimated buffers take into account the actual buffers ren-
dered in the past iteration. This will be cumulatively done
in each iteration, which is indeed the essence of our de-
sign. Further, in iteration 2, the actual buffer available is
unutilized, as the estimated value is0. This preventsK3 to
request any load from the source at this iteration. This is
somewhat natural to expect which is captured in our design.
Another important observation comes from the fact that in
iteration 2, if the estimated load sizes have been requested
by all the sinks then the sourcesS1 andS2 could have been
completely processed in this iteration itself. However since
K4 could not accommodate the estimate load,S1 andS2

are forced to be considered for scheduling in the future iter-
ations as well.

Also, note that althoughS3 becomes available for pro-
cessing after iteration 2 starts, it is considered for process-
ing in iteration 3 onwards. Note that in iteration 3, the es-
timated buffer atK3 is observed to be less than the actual
buffer available. Thus, the scheduler considers a load based
on a minimum of the actual or estimated buffer space. In our
case, this turns out to be the estimated buffer value. Now,
when the estimated total load to be processed is less than or
equal to the available buffer spaces, then all the loads could
be scheduled and processed at this iteration itself. This hap-
pens at iteration 4 in our example.

The proposed IIB strategy works as long as the buffer
variations are not drastic. Further, if new loads arrive to
the system before the loads being processed are completed,
then the processing of existing loads will be stretched.
Thus, when loads to be processed are not time-critical the
strategy is highly recommended. This aspect indeed trig-
gers an open issue for refining this approach to accommo-
date an admission control mechanism that could adapt to
random arrivals of the loads. This is one of our future ex-
tensions.

References

[1] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufman, 1999.

[2] H.-J. Kim. A Novel Optimal Load Distribution Algorithm
for Divisible Loads. Kluwer Academic Publishers, January
2003.

[3] X. Li, B. Veeravalli, and C. Ko. Divisible Load Schedul-
ing on Single Level Tree Networks with Buffer Constraints.
IEEE Transactions on Aerospace and Electronic Systems,
36(4):1298–1308, Oct. 2000.

[4] T. Robertazzi. Ten Reasons to Use Divisible Load Theory.
Computer, 2003.

[5] A. Rosenberg. Sharing Partitionable Workload in Heteroge-
neous NOWs: Greedier is Not Better. InProc. of IEEE Inter-
national Conference on Cluster Computing, pages 124–131,
Newport Beach CA, USA, 2001.

7

[6] J. Sohn and T. Robertazzi. Optimal Time-Varying Load
Sharing for Divisible Loads. IEEE Transactions on
Aerospace and Electronic Systems, 34(3):907–923, July
1998.

[7] B. Veeravalli and G. Barlas. Scheduling Divisible Loads
with Processor Release Times and Finite Size Buffer Ca-
pacity Constraints. In T. G. Robertazzi and D. Ghose, edi-
tors,special issue of Cluster Computing on Divisible Load
Scheduling, volume 6 of1, pages 63–74. Kluwer Academic
Publishers, Jan. 2003.

[8] B. Veeravalli, D. Ghose, V. Mani, and T. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed Sys-
tems. IEEE Computer Society Press, Los Alamitos, CA,
Sept. 1996.

[9] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible
Load Theory: A New Paradigm for Load Scheduling in Dis-
tributed Systems. In T. G. Robertazzi and D. Ghose, edi-
tors,special issue of Cluster Computing on Divisible Load
Scheduling, volume 6 of1, pages 7–18. Kluwer Academic
Publishers, Jan. 2003.

[10] S. Viswanathan, B. Veeravalli, D. Yu, and T. G. Robertazzi.
Pull-based resource aware scheduling on large-scale compu-
tational grid systems. Technical Report TR/OSSL/VB/GC-
01-2004.

[11] H. Wong, D. Yu, B. Veeravalli, and T. Robertazzi. Data
Intensive Grid Scheduling: Multiple Sources with Capacity
Constraints. InIASTED International Conference on Paral-
lel and Distributed Computing and Systems (PDCS 2003),
Marina del Rey, CA, Nov. 2003.

[12] D. Yu and T. Robertazzi. Divisible Load Scheduling for Grid
Computing. InIASTED International Conference on Paral-
lel and Distributed Computing and Systems (PDCS 2003),
Marina del Rey, CA, Nov. 2003.

8

